Keuntungan dan keterbatasan metode bergerak rata rata metode tren pas


Langkah-langkah dalam memilih model peramalan Model peramalan Anda harus mencakup fitur yang menangkap semua sifat kualitatif penting dari data: pola variasi tingkat dan tren, dampak inflasi dan musiman, korelasi antar variabel, dan sebagainya. Selain itu, asumsi yang mendasari Model yang dipilih harus sesuai dengan intuisi Anda tentang bagaimana rangkaian ini cenderung berperilaku di masa depan. Saat memasang model peramalan, Anda memiliki beberapa pilihan berikut: Pilihan ini dijelaskan secara singkat di bawah ini. Lihat Bagan Peramalan Peramalan untuk tampilan bergambar dari model-spesifikasi proses, dan lihat kembali ke panel Spesifikasi Model Statgrafik untuk melihat bagaimana fitur model dipilih dalam perangkat lunak. Deflasi Jika seri menunjukkan pertumbuhan inflasi, maka deflasi akan membantu memperhitungkan pola pertumbuhan dan mengurangi heteroskedastisitas pada residu. Anda dapat (i) mengempiskan data masa lalu dan menyesuaikan kembali perkiraan jangka panjang pada tingkat asumsi konstan, atau (ii) mengempiskan data masa lalu dengan indeks harga seperti CPI, dan kemudian secara otomatis menentukan kembali perkiraan jangka panjang yang menggunakan Perkiraan indeks harga. Opsi (i) adalah yang termudah. Di Excel, Anda bisa membuat kolom formula untuk membagi nilai asli dengan faktor yang sesuai. Misalnya, jika datanya bulanan dan Anda ingin mengempis dengan kecepatan 5 per 12 bulan, Anda akan membagi dengan faktor (1,05) (k12) di mana k adalah indeks baris (nomor pengamatan). RegressIt dan Statigrafi memiliki alat built-in yang melakukan ini secara otomatis untuk Anda. Jika Anda pergi ke rute ini, biasanya lebih baik menetapkan tingkat inflasi yang diasumsikan sama dengan perkiraan terbaik tarif saat ini, terutama jika Anda akan meramalkan lebih dari satu periode di depan. Jika Anda memilih opsi (ii), pertama Anda harus menyimpan perkiraan dan batasan kepercayaan yang kempos ke spreadsheet data Anda, kemudian menghasilkan dan menyimpan perkiraan indeks harga, dan akhirnya memperbanyak kolom yang sesuai. (Kembali ke atas halaman.) Transformasi logaritma Jika rangkaian menunjukkan pertumbuhan majemuk dan atau pola musiman multiplikatif, transformasi logaritma dapat membantu selain atau pengganti deflasi. Logging data tidak akan meratakan pola pertumbuhan inflasi, namun akan meluruskannya sehingga dapat dipasang oleh model linier (misalnya model berjalan acak atau ARIMA dengan pertumbuhan konstan, atau model pemulusan eksponensial linier). Selain itu, penebangan akan mengubah pola musiman multiplikatif menjadi pola aditif, sehingga jika Anda melakukan penyesuaian musiman setelah melakukan penebangan, Anda harus menggunakan jenis aditif. Logging berkaitan dengan inflasi secara implisit jika Anda ingin inflasi dimodelkan secara eksplisit - yaitu. Jika Anda ingin tingkat inflasi menjadi parameter yang terlihat dari model atau jika Anda ingin melihat plot data yang kempes - maka Anda harus mengempis daripada log. Penggunaan penting lain untuk transformasi log adalah hubungan linier antara variabel dalam mode regresi l. Misalnya, jika variabel dependen adalah fungsi multiplikatif daripada aditif dari variabel independen, atau jika hubungan antara variabel dependen dan independen linier dalam hal perubahan persentase daripada perubahan absolut, maka penerapan transformasi log ke satu atau lebih variabel Mungkin tepat, seperti pada contoh penjualan bir. (Penyesuaian musiman Jika rangkaian memiliki pola musiman yang kuat yang diyakini konstan dari tahun ke tahun, penyesuaian musiman mungkin merupakan cara yang tepat untuk memperkirakan dan memperkirakan pola. Keuntungan penyesuaian musiman adalah model pola musiman secara eksplisit, memberi Anda pilihan untuk mempelajari indeks musiman dan data musiman yang disesuaikan. Kerugiannya adalah bahwa hal itu memerlukan estimasi sejumlah besar parameter tambahan (terutama untuk data bulanan), dan tidak memberikan dasar teoritis untuk perhitungan interval kepercayaan quotcorrectquot confidence. Validasi out-of-sample sangat penting untuk mengurangi risiko over-pas data masa lalu melalui penyesuaian musiman. Jika datanya sangat musiman namun Anda tidak memilih penyesuaian musiman, alternatifnya adalah untuk (i) menggunakan model ARIMA musiman. Yang secara implisit memperkirakan pola musiman menggunakan kelambanan musiman dan perbedaan, atau (ii) menggunakan model pemulusan eksponensial musiman Winters, yang memperkirakan indeks musiman bervariasi waktu. (Return to top of page.) QuotIndependentquot variables Jika ada deret waktu lain yang Anda yakini memiliki kekuatan penjelasan sehubungan dengan rangkaian minat Anda (misalnya indikator ekonomi atau variabel kebijakan terkemuka seperti harga, iklan, promosi, dll.) Anda Mungkin ingin mempertimbangkan regresi sebagai tipe model Anda. Apakah Anda memilih regresi atau tidak, Anda masih perlu mempertimbangkan kemungkinan yang disebutkan di atas untuk mengubah variabel Anda (deflasi, log, penyesuaian musiman - dan mungkin juga differencing) sehingga dapat memanfaatkan dimensi waktu dan membuat hubungan dengan mereka. Bahkan jika Anda tidak memilih regresi pada saat ini, Anda mungkin ingin mempertimbangkan untuk menambahkan regresor ke model time-series (misalnya model ARIMA) jika residu ternyata memiliki korelasi silang signficant dengan variabel lainnya. (Kembali ke atas halaman.) Jalan Smoothing, rata-rata, atau acak Jika Anda telah memilih menyesuaikan data secara musiman - atau jika datanya tidak musiman untuk dimulai - maka Anda mungkin ingin menggunakan model rata-rata atau merapikan Sesuai dengan pola nonseasonal yang tetap ada dalam data pada saat ini. Rata-rata pemindaian sederhana atau model pemulusan eksponensial sederhana hanya menghitung data rata-rata lokal pada akhir rangkaian, dengan asumsi bahwa ini adalah perkiraan terbaik dari nilai rata-rata saat ini dimana data berfluktuasi. (Model-model ini berasumsi bahwa rata-rata seri bervariasi secara perlahan dan acak tanpa tren yang terus-menerus.) Pemulusan eksponensial sederhana biasanya lebih disukai daripada rata-rata bergerak sederhana, karena rata-rata tertimbang eksponensialnya melakukan pekerjaan yang lebih masuk akal untuk mengurangi data yang lebih tua, karena Parameter smoothing (alpha) bersifat kontinu dan dapat segera dioptimalkan, dan karena memiliki dasar teoritis yang mendasari untuk menghitung interval kepercayaan. Jika merapikan atau rata-rata tampaknya tidak membantu - yaitu. Jika prediktor terbaik dari nilai berikutnya dari rangkaian waktu hanyalah nilai sebelumnya - maka model jalan acak ditunjukkan. Ini adalah kasusnya, misalnya, jika jumlah istilah optimal dalam rata-rata bergerak sederhana ternyata 1, atau jika nilai optimal alfa dalam perataan eksponensial sederhana ternyata adalah 0,9999. Pemulusan eksponensial linier Brown dapat digunakan untuk menyesuaikan rangkaian dengan tren linier yang bervariasi secara perlahan, namun berhati-hatilah untuk mengekstrapolasi tren semacam itu jauh ke masa depan. (Perputaran kepercayaan yang meluas dengan cepat untuk model ini memberi kesaksian akan ketidakpastian tentang masa depan yang jauh.) Holts smoothing linier juga memperkirakan tren yang bervariasi, namun menggunakan parameter terpisah untuk merapikan tingkat dan kecenderungan, yang biasanya memberikan kecocokan yang lebih baik pada data. Dari model Brown8217s. Q uadratic eksponensial smoothing mencoba untuk memperkirakan tren kuadrat bervariasi waktu, dan hampir tidak akan pernah digunakan. (Hal ini sesuai dengan model ARIMA dengan tiga urutan perbedaan nonseasonal.) Pemulusan eksponensial linier dengan tren yang teredam (yaitu tren yang merata di cakrawala jauh) sering direkomendasikan dalam situasi di mana masa depan sangat tidak pasti. Berbagai model pemulusan eksponensial adalah kasus khusus model ARIMA (dijelaskan di bawah) dan dapat dilengkapi dengan perangkat lunak ARIMA. Secara khusus, model smoothing eksponensial sederhana adalah model ARIMA (0,1,1), model pemulusan linier Holt8217 adalah model ARIMA (0,2,2), dan model tren teredam adalah ARIMA (1,1,2 ) model. Ringkasan yang baik dari persamaan berbagai model pemulusan eksponensial dapat ditemukan di halaman ini di situs web SAS. (Menu SAS untuk menentukan model rangkaian waktu juga ditunjukkan di sana. Mereka serupa dengan yang ada di Stategafika.) Model garis tren linier, kuadrat, atau eksponensial adalah opsi lain untuk mengekstrapolasi rangkaian deseasonalized, namun jarang mengungguli berjalan acak, merapikan, atau Model ARIMA pada data bisnis. (Musim kemarau ekspedisi eksponensial musiman adalah perpanjangan dari pemulusan eksponensial yang secara simultan memperkirakan tingkat variasi, tren, dan faktor musiman yang berbeda dengan menggunakan persamaan rekursif. (Jadi, jika Anda menggunakan model ini, Anda tidak akan menyesuaikan data secara musiman.) Faktor musiman Winters dapat berupa perkalian atau aditif: biasanya Anda harus memilih opsi perkalian kecuali Anda telah mencatat data. Meskipun model Winters pandai dan cukup intuitif, namun praktis menerapkannya: memiliki tiga parameter pemulusan - alfa, beta, dan gamma - untuk meratakan tingkat, tren, dan faktor musiman secara terpisah, yang harus diperkirakan serentak. Penentuan nilai awal untuk indeks musiman dapat dilakukan dengan menerapkan metode rata-rata rasio ke rata-rata penyesuaian musiman ke sebagian atau seluruh rangkaian dan atau dengan backforecasting. Algoritma estimasi yang digunakan Statgraphics untuk parameter ini terkadang gagal untuk menyatukan dan menghasilkan nilai yang memberi perkiraan dan interval kepercayaan yang aneh, jadi saya akan merekomendasikan kehati-hatian saat menggunakan model ini. (Kembali ke atas halaman.) ARIMA Jika Anda tidak memilih penyesuaian musiman (atau jika datanya tidak musiman), Anda mungkin ingin menggunakan kerangka model ARIMA. Model ARIMA adalah kelas model yang sangat umum yang mencakup jalan acak, tren acak, pemulusan eksponensial, dan model autoregresif sebagai kasus khusus. Kebijaksanaan konvensional adalah bahwa seri adalah kandidat yang baik untuk model ARIMA jika (i) dapat dipetakan dengan kombinasi antara differencing dan transformasi matematis lainnya seperti penebangan kayu, dan (ii) Anda memiliki sejumlah data yang cukup untuk bekerja dengan : Setidaknya 4 musim penuh dalam kasus data musiman. (Jika rangkaian tidak dapat dipetakan secara stasionerisasi dengan cara membedakan - misalnya jika sangat tidak beraturan atau tampaknya mengubah perilaku secara kualitatif dari waktu ke waktu - atau jika Anda memiliki data kurang dari 4 musim, mungkin Anda lebih baik dengan model Yang menggunakan penyesuaian musiman dan beberapa jenis rata-rata atau penghalusan sederhana.) Model ARIMA memiliki konvensi penamaan khusus yang diperkenalkan oleh Box and Jenkins. Model ARIMA nonseasonal diklasifikasikan sebagai model ARIMA (p, d, q), di mana d adalah jumlah perbedaan nonseasonal, p adalah jumlah istilah autoregresif (lag dari seri yang berbeda), dan q adalah jumlah moving - Istilah rata-rata (kelambatan dari kesalahan perkiraan) dalam persamaan prediksi. Model ARIMA musiman diklasifikasikan sebagai ARIMA (p, d, q) x (P, D, Q). Dimana D, P, dan Q adalah, masing-masing, jumlah perbedaan musiman, istilah autoregresif musiman (lags dari seri yang berbeda pada kelipatan periode musiman), dan rata-rata musiman moving average (lag dari kesalahan perkiraan pada kelipatan musiman periode). Langkah pertama dalam pemasangan model ARIMA adalah menentukan urutan differensiasi yang sesuai yang diperlukan untuk membuat stasioner seri dan menghapus fitur kotor musiman. Ini setara dengan menentukan model jalan acak-acak atau acak-acak mana yang memberikan titik awal terbaik. Jangan mencoba menggunakan lebih dari 2 total pesanan differencing (kombinasi non musiman dan musiman), dan jangan gunakan lebih dari 1 perbedaan musiman. Langkah kedua adalah menentukan apakah memasukkan istilah konstan dalam model: biasanya Anda menyertakan istilah konstan jika urutan total differensi adalah 1 atau kurang, jika tidak, Anda tidak. Dalam model dengan satu urutan differencing, istilah konstan mewakili tren rata-rata pada prakiraan. Dalam model dengan dua urutan differencing, tren dalam prakiraan ditentukan oleh tren lokal yang diamati pada akhir deret waktu, dan istilah konstan mewakili tren tren, yaitu kelengkungan jangka panjang, Perkiraan jangka panjang Biasanya berbahaya untuk melakukan ekstrapolasi tren-tren, jadi Anda menekan istilah contant dalam kasus ini. Langkah ketiga adalah memilih jumlah parameter rata-rata autoregresif dan moving average (p, d, q, P, D, Q) yang diperlukan untuk menghilangkan autokorelasi yang tertinggal dalam residual dari model naif (yaitu korelasi yang tersisa setelah Hanya differencing). Angka-angka ini menentukan jumlah lag dari deret yang berbeda dan atau lag dari kesalahan perkiraan yang termasuk dalam persamaan peramalan. Jika tidak ada autokorelasi yang signifikan pada residu pada saat ini, maka STOP, yang telah Anda lakukan: model terbaik adalah model naif Jika ada autokorelasi yang signifikan pada kelambatan 1 atau 2, Anda harus mencoba menyetel q1 jika salah satu dari hal berikut berlaku: I) ada perbedaan non musiman dalam model, (ii) autokorelasi lag 1 negatif. Andor (iii) plot otokorelasi residu tampak lebih bersih (lonjakan lebih sedikit dan lebih terisolasi) daripada plot otokorelasi parsial parsial. Jika tidak ada perbedaan musiman pada model dan jika autokorelasi lag 1 positif dan atau plot autokorelasi parsial sebagian terlihat lebih bersih, maka cobalah p1. (Kadang-kadang aturan untuk memilih antara konflik p1 dan q1 satu sama lain, dalam hal ini mungkin tidak banyak bedanya dengan yang Anda gunakan. Cobalah keduanya dan bandingkan). Jika ada autokorelasi pada lag 2 yang tidak dihilangkan dengan menyetel p1 Atau q1, Anda kemudian dapat mencoba p2 atau q2, atau kadang-kadang p1 dan q1. Lebih jarang Anda mungkin mengalami situasi di mana p2 atau 3 dan q1, atau sebaliknya, menghasilkan hasil terbaik. Sangat disarankan agar Anda tidak menggunakan pgt1 dan qgt1 dalam model yang sama. Secara umum, ketika memasang model ARIMA, Anda harus menghindari kompleksitas model yang meningkat agar hanya memperoleh sedikit perbaikan lebih lanjut pada statistik kesalahan atau tampilan plot ACF dan PACF. Juga, dalam model dengan kedua pgt1 dan qgt1, ada kemungkinan redundansi dan ketidak-mampuan yang baik antara sisi AR dan MA dari model, seperti yang dijelaskan dalam catatan pada struktur matematis model ARIMA. Biasanya lebih baik melangkah maju secara bertahap daripada melangkah mundur saat mengutak-atik spesifikasi model: mulailah dengan model yang lebih sederhana dan hanya menambahkan lebih banyak istilah jika ada kebutuhan yang jelas. Aturan yang sama berlaku untuk jumlah istilah autoregresif musiman (P) dan jumlah istilah rata-rata pergerakan musiman (Q) berkenaan dengan autokorelasi pada periode musiman (misalnya lag 12 untuk data bulanan). Coba Q1 jika sudah ada perbedaan musiman pada model dan jika autokorelasi musiman negatif dan atau plot autokorelasi residu terlihat lebih bersih di sekitar lag musiman jika tidak, coba P1. (Jika masuk akal bagi seri untuk menunjukkan musim yang kuat, maka Anda harus menggunakan perbedaan musiman, jika tidak, pola musiman akan pudar saat membuat perkiraan jangka panjang.) Kadang-kadang Anda mungkin ingin mencoba P2 dan Q0 atau wakil veteran, Atau PQ1. Namun, sangat disarankan agar PQ tidak pernah lebih besar dari 2. Pola musiman jarang memiliki keteraturan sempurna selama jumlah musim yang cukup besar sehingga memungkinkan untuk mengidentifikasi dan memperkirakan dengan pasti banyak parameter. Selain itu, algoritma backforecasting yang digunakan dalam estimasi parameter cenderung menghasilkan hasil yang tidak dapat diandalkan (atau bahkan gila) bila jumlah data musim tidak jauh lebih besar daripada PDQ. Saya akan merekomendasikan tidak kurang dari PDQ2 musim penuh, dan lebih baik. Sekali lagi, saat memasang model ARIMA, Anda harus berhati-hati untuk menghindari data yang terlalu pas, terlepas dari kenyataan bahwa ini sangat menyenangkan saat Anda memahaminya. Kasus khusus yang penting: Seperti disebutkan di atas, model ARIMA (0,1,1) tanpa konstan identik dengan model pemulusan eksponensial sederhana, dan mengasumsikan tingkat mengambang (yaitu tidak ada perubahan rata-rata) namun dengan nol tren jangka panjang. Model ARIMA (0,1,1) dengan konstanta adalah model pemulusan eksponensial sederhana dengan istilah linier nonzero linear yang disertakan. Model ARIMA (0,2,1) atau (0,2,2) tanpa konstanta adalah model pemulusan eksponensial linier yang memungkinkan tren waktu bervariasi. Model ARIMA (1,1,2) tanpa konstan adalah model pemulusan eksponensial linier dengan tren yang teredam, yaitu tren yang pada akhirnya merata dalam perkiraan jangka panjang. Model ARIMA musiman yang paling umum adalah model ARIMA (0,1,1) x (0,1,1) tanpa model konstan dan ARIMA (1,0,1) x (0,1,1) dengan konstanta. Mantan model ini pada dasarnya menerapkan pemulusan eksponensial ke komponen nonseasonal dan musiman dari pola dalam data sambil membiarkan tren bervariasi waktu, dan model yang terakhir agak mirip namun mengasumsikan tren linier konstan dan karena itu sedikit lebih lama. Prediksi prediktabilitas. Anda harus selalu menyertakan kedua model ini di antara jajaran tersangka saat melengkapi data dengan pola musiman yang konsisten. Salah satunya (mungkin dengan sedikit variasi seperti kenaikan p atau q oleh 1 dan jika setting P1 dan juga Q1) cukup sering yang terbaik. (Kembali ke atas halaman.) Peramalan dengan Teknik Smoothing Situs ini adalah bagian dari objek pembelajaran JavaScript E-lab untuk pengambilan keputusan. JavaScript lain dalam seri ini dikategorikan dalam berbagai bidang aplikasi di bagian MENU di halaman ini. Seri waktu adalah urutan pengamatan yang dipesan tepat waktu. Inheren dalam pengumpulan data yang diambil dari waktu ke waktu adalah beberapa bentuk variasi acak. Ada metode untuk mengurangi pembatalan efek karena variasi acak. Teknik yang banyak digunakan adalah smoothing. Teknik-teknik ini, bila diterapkan dengan benar, menunjukkan lebih jelas tren dasarnya. Masukkan deret waktu Row-wise secara berurutan, mulai dari sudut kiri atas, dan parameternya, lalu klik tombol Hitung untuk mendapatkan peramalan satu periode di depan. Kotak kosong tidak termasuk dalam perhitungan tapi angka nol. Dalam memasukkan data Anda untuk berpindah dari sel ke sel di matriks data gunakan tombol Tab bukan panah atau masukkan kunci. Fitur deret waktu, yang mungkin terungkap dengan memeriksa grafiknya. Dengan nilai perkiraan, dan perilaku residual, pemodelan peramalan kondisi. Moving Averages: Moving averages rank antara teknik yang paling populer untuk preprocessing time series. Mereka digunakan untuk menyaring suara putih acak dari data, membuat rangkaian waktu lebih halus atau bahkan untuk menekankan komponen informasi tertentu yang terdapat dalam deret waktu. Exponential Smoothing: Ini adalah skema yang sangat populer untuk menghasilkan Time Series yang merapikan. Sedangkan dalam Moving Averages, pengamatan terakhir tertimbang secara merata, Exponential Smoothing memberikan bobot yang menurun secara eksponensial saat pengamatan bertambah tua. Dengan kata lain, observasi terakhir diberi bobot yang relatif lebih banyak dalam peramalan daripada pengamatan yang lebih tua. Double Exponential Smoothing lebih baik dalam menangani tren. Triple Exponential Smoothing lebih baik dalam menangani tren parabola. Rata-rata pergerakan tertimbang secara eksponensial dengan konstanta pemulusan a. Sesuai kira-kira dengan panjang rata-rata bergerak sederhana (yaitu periode) n, di mana a dan n dihubungkan oleh: a 2 (n1) ATAU n (2 - a) a. Jadi, misalnya, rata-rata bergerak tertimbang secara eksponensial dengan konstanta pemulusan sama dengan 0,1 akan sesuai kira-kira dengan rata-rata pergerakan 19 hari. Dan rata-rata pergerakan sederhana 40 hari akan sesuai kira-kira dengan rata-rata pergerakan tertimbang eksponensial dengan konstanta pemulusan sama dengan 0,04878. Holts Linear Exponential Smoothing: Misalkan deret waktunya tidak musiman namun memang menunjukkan tren. Metode Holts memperkirakan tingkat arus dan tren saat ini. Perhatikan bahwa rata-rata pergerakan sederhana adalah kasus khusus dari perataan eksponensial dengan menetapkan periode rata-rata bergerak ke bagian integer (Alpha 2). Untuk kebanyakan data bisnis, parameter Alpha yang lebih kecil dari 0,40 sering kali efektif. Namun, seseorang dapat melakukan pencarian grid dari ruang parameter, dengan 0,1 sampai 0,9, dengan penambahan 0,1. Kemudian alpha terbaik memiliki Mean Absolute Error terkecil (MA Error). Bagaimana membandingkan beberapa metode pemulusan: Meskipun ada indikator numerik untuk menilai keakuratan teknik peramalan, pendekatan yang paling banyak adalah menggunakan perbandingan visual beberapa perkiraan untuk menilai keakuratannya dan memilih di antara berbagai metode peramalan. Dalam pendekatan ini, seseorang harus merencanakan (menggunakan, misalnya Excel) pada grafik yang sama dengan nilai asli dari variabel deret waktu dan nilai prediksi dari beberapa metode peramalan yang berbeda, sehingga memudahkan perbandingan visual. Anda mungkin ingin menggunakan Prakiraan Masa Lalu oleh Teknik Smoothing JavaScript untuk mendapatkan perkiraan perkiraan masa lalu berdasarkan teknik pemulusan yang hanya menggunakan satu parameter tunggal. Metode Holt, dan Winters masing-masing menggunakan dua dan tiga parameter, oleh karena itu bukanlah tugas yang mudah untuk memilih nilai optimal, atau mendekati nilai optimal dengan trial and error untuk parameter. Pemulusan eksponensial tunggal menekankan perspektif jarak pendek yang menetapkan tingkat pada pengamatan terakhir dan didasarkan pada kondisi bahwa tidak ada kecenderungan. Regresi linier, yang sesuai dengan garis kuadrat terkecil terhadap data historis (atau data historis yang ditransformasikan), mewakili rentang panjang, yang dikondisikan pada tren dasarnya. Holts linear exponential smoothing menangkap informasi tentang tren terkini. Parameter dalam model Holts adalah level-parameter yang harus diturunkan bila jumlah variasi data besar, dan parameter tren harus ditingkatkan jika arah tren terkini didukung oleh faktor penyebab. Peramalan Jangka Pendek: Perhatikan bahwa setiap JavaScript di halaman ini memberikan perkiraan satu langkah di depan. Untuk mendapatkan ramalan dua langkah di depan. Cukup tambahkan nilai perkiraan ke akhir data deret waktu Anda lalu klik tombol Hitung yang sama. Anda dapat mengulangi proses ini beberapa kali untuk mendapatkan ramalan jangka pendek yang dibutuhkan. Model rata-rata dan eksponensial smoothing yang sedang berjalan Sebagai langkah pertama dalam bergerak melampaui model mean, model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat Diekstrapolasikan menggunakan model rata-rata bergerak atau pemulusan. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat smoothing (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata - rata yang paling sederhana adalah. Simple Moving Average: Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t - (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model simple moving average (SMA) sama dengan model random walk (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk memperoleh kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia menggunakan banyak kuotimasi dalam Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang tampak lebih halus: Rata-rata pergerakan sederhana 5 langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai pengamatan terakhir, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian bisa menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata bergerak sederhana 9-istilah, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, rata-rata usia meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata pergerakan 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 - term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam prakiraan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapatkan bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan ramalan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam perkiraan pemulusan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, ketika 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada ramalan rata-rata bergerak sederhana karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang tampak wajar, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model acak berjalan. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linear konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena pilihan penyesuaian musiman dinonaktifkan saat jenis model disetel ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang sesuai per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau setidaknya tidak terlalu buruk selama 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan tren lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada berbagai titik waktu. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217s, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke seri Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat, bahwa dengan sederhana Eksponensial smoothing, ini akan menjadi perkiraan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi smoothing eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Ls menghitung perkiraan lokal tingkat dan tren dengan menghaluskan data baru-baru ini, namun kenyataan bahwa ia melakukannya dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Bisa diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian umur rata-rata data yang digunakan dalam memperkirakan tingkat lokal seri, rata-rata usia data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata 10.006 125. Ini adalah jumlah yang sangat tepat karena keakuratan estimasi 946 tidak benar-benar ada 3 tempat desimal, namun urutannya sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir rangkaian daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan cara memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat secara manual menyesuaikan konstanta perataan tren sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi paling baik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, perataan eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi naluriah kuotriotipnya. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Hal ini dimungkinkan untuk menghitung interval kepercayaan sekitar perkiraan jangka panjang yang dihasilkan oleh model pemulusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat bila perataan linier dan bukan perataan sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke bagian atas halaman.)

Comments

Popular Posts